အိုင်စီပတ်လမ်း: တည်းဖြတ်မှု မူကွဲများ

ဝီကီပီးဒီးယား မှ
No edit summary
No edit summary
စာကြောင်း ၁ - စာကြောင်း ၁ -
ယခု‌ခေတ်သည် မိုက်ခရို အီလက်ထရွန်းနစ်‌ခေတ် ဖြစ်သည်။ မိုက်ခရိုအီလက် ထရွန်းနစ် ဆိုသည်မှာ မိုနိုလစ်သစ် အင်တီဂရိတ်တက် ဆာကစ်များ (monolithic integrated circuits)၊ အလွှာထူ ဟိုက်ဗရစ် ဆာကစ်များ (thick-film hybrid circuits)နှင့် အလွှာပါး ဟိုက်ဗရစ် ဆာကစ်မျာ;(thin-film hybrid circuits) များ၏ ဒီဇိုင်းဆွဲခြင်း၊ တည်‌ဆောက်ခြင်းနှင့် အသုံးပြုခြင်းတို့နှင့် သက်ဆိုင်‌သော ဘာသာရပ်ကို ‌ခေါ်သည်။
။ယခု‌ခေတ်သည် မိုက်ခရို အီလက်
ထရွန်းနစ်‌ခေတ် ဖြစ်သည်။ မိုက်ခရိုအီလက် ထရွန်းနစ်
ဆိုသည်မှာ မိုနိုလစ်သစ် အင်တီဂရိတ်တက် ဆာကစ်များ
(monolithic integrated circuits)၊ အလွှာထူ ဟိုက်ဗရစ်
ဆာကစ်များ (thick-film hybrid circuits)နှင့် အလွှာပါး
ဟိုက်ဗရစ်ဆာကစ်မျာ;(thin-film hybrid circuits) များ၏
ဒီဇိုင်းဆွဲခြင်း၊ တည်‌ဆောက်ခြင်းနှင့် အသုံးပြုခြင်းတို့နှင့်
သက်ဆိုင်‌သော ဘာသာရပ်ကို ‌ခေါ်သည်။


မိုက်ခရိုအီလက်ထရွန်းနစ် ဘာသာရပ်သည် တစ်ဟုန်ထိုး တိုးတက်လျက် ရှိ‌နေသည်အမျှ အင်တီဂရိတ် တက်ဆာကစ် များ၏ အရွယ်အစားသည် ‌သေးငယ်လာပြီး စရိတ်လည်း သက်သာလာသည်။ အင်တီဂရိတ် တက်ဆာကစ်များ တိုးတက် ‌ကောင်းမွန်လာ‌စေရန် တစ်ပိုင်းလျှပ်ကူးပစ္စည်းများကို ‌သေးငယ် နိုင်သမျှ ‌သေးငယ်‌အောင် ပြုလုပ်ရန် လိုအပ်သည်။ ဆီလီကွန် ချစ် (chip)တစ်ခု‌ပေါ်တွင် တင်ထားနိုင်‌သော [[ထရန်စစ္စတာ]]၊ [[ဒိုင်အုတ်]]၊ လျှပ်ခံနှင့် လျှပ်သိုစသည့် ဆာကစ်အဲလိမင့်(circuit element) အ‌ရေအတွက်သည် အလွန်အမင်း တိုးတက်လျက် ရှိ‌နေသည်။ ချစ်တစ်ခုအ‌ပေါ်တွင် အဲလိမင့် ၆ဝခန့် တင်ထာ ‌သော အ‌သေးစား အင်တီဂ‌ရေးရှင်း (small-scale integration)၊ အဲလိမင့်‌ပေါင်း ၂၀၀ မှ ၃၀၀ အထိ တင်ထား‌သော အလတ်စားအင်တီဂ‌ရေးရှင်း (medium-scale integration)နှင့် အဲလိမင့်
မိုက်ခရိုအီလက်ထရွန်းနစ် ဘာသာရပ်သည် တစ်ဟုန်ထိုး
၁၀၀၀ ‌ကျော် တင်ထား‌သော အကြီးစား အင်တီဂ‌ရေးရှင်း (large-scale integration)များမှ တဆင့် အဲလိမင့် ၁၀၀၀၀ နှင့် အထက်ကို တင်ထား‌သော အလွန်ကြီး‌သော အင်တီဂ‌ရေးရှင်း (very-large-scale intergration)များအထိ လျင်မြန်စွာ တိုးတက် ‌ပြောင်းလဲ
တိုးတက်လျက် ရှိ‌နေသည်အမျှ အင်တီဂရိတ် တက်ဆာကစ်
လာခဲ့ပြီ ဖြစ်သည်။ ထိုထက်မက‌သော အဲလိမင့်ကို တင်ထား နိုင်သည် အလွန့်အလွန် အကြီးစား အင်တီဂ‌ရေးရှင်း (ultra-
များ၏ အရွယ်အစားသည် ‌သေးငယ်လာပြီး စရိတ်လည်း
large-scale intergration)ခေတ်သည် မ‌ဝေးလှ‌တော့ဟုပင် ဆိုရမည် ဖြစ်သည်။
သက်သာလာသည်။ အင်တီဂရိတ် တက်ဆာကစ်များ တိုးတက်
‌ကောင်းမွန်လာ‌စေရန် တစ်ပိုင်းလျှပ်ကူးပစ္စည်းများကို ‌သေးငယ်
နိုင်သမျှ ‌သေးငယ်‌အောင် ပြုလုပ်ရန် လိုအပ်သည်။ QDလီကွန်
ချစ် (chip)တစ်ခု‌ပေါ်တွင် တင်ထားနိုင်‌သော ထရန်စစ္စတာ၊
ဒိုင်အုတ်၊ လျှပ်ခံနှင့် လျှပ်သိုစသည့် ဆာကစ်အဲလိမင့်(circuit
element) အ‌ရေအတွက်သည် အလွန်အမင်း တိုးတက်လျက်
ရှိ‌နေသည်။ ချစ်တစ်ခုအ‌ပေါ်တွင် အဲလိမင့် ၆ဝခန့် တင်ထာ
‌သော အ‌သေးစား အင်တီဂ‌ရေးရှင်း (small-scale integration)၊
အဲလိမင့်‌ပေါင်း ၂၀၀ မှ ၃၀၀ အထိ တင်ထား‌သော အလတ်စား
အင်တီဂ‌ရေးရှင်း (medium-scale integration)နှင့် အဲလိမင့်
၁၀၀၀ ‌ကျော် တင်ထား‌သော အကြီးစား အင်တီဂ‌ရေးရှင်း
(large-scale integration)များမှ တဆင့် အဲလိမင့် ၁၀၀၀၀
နှင့် အထက်ကို တင်ထား‌သော
အလွန်ကြီး‌သော အင်တီဂ‌ရေးရှင်း (very-large-scale
intergration)များအထိ လျင်မြန်စွာ တိုးတက် ‌ပြောင်းလဲ
လာခဲ့ပြီ ဖြစ်သည်။ ထိုထက်မက‌သော အဲလိမင့်ကို တင်ထား
နိုင်သည် အလွန့်အလွန် အကြီးစား အင်တီဂ‌ရေးရှင်း (ultra-
large-scale intergration)ခေတ်သည် မ‌ဝေးလှ‌တော့ဟုပင်
ဆိုရမည် ဖြစ်သည်။


မိုနိုလစ်သစ် အင်တီဂရိတ်တက် ဆာကစ် နည်းပညာသည်[[ တစ်ပိုင်းလျှပ်ကူးပစ္စည်း]]ဖြစ်‌သော ဆီလီကွန်‌ပေါ်တွင် လုံးလုံး လျားလျား မှီခို‌နေသည်။ ဆီလီကွန်ပုံ‌ဆောင်ခဲကို ‌ချော့ကရား စကီးနည်း (Czochralski method) ဖြင့် ထုတ်လုပ်‌လေ့ ရှိကြ သည်။ ၁၄၀၀၀ ဒီဂရီစင်တီဂရိတ်အထိ အပူချိန်မြှင့်ထား‌သော အရည်‌ပျော် ဆီလီကွန်မျက်နှာပြင်‌ပေါ်တွင် ခဲတံအရွယ်ရှိ ပုံ‌ဆောင်ခဲအ‌စေ့ကို နှစ်ပြီး အထက်သို့ တဖြည်းဖြည်း ဆွဲတင်ယူသည်။ ဆီလီကွန်ပုံ‌ဆောင်ခဲကို ကူးသန်းဇုန်နည်း (float-zone method) ဖြင့်လည်း ထုတ်လုပ်ကြသည်။
မိုနိုလစ်သစ် အင်တီဂရိတ်တက် ဆာကစ် နည်းပညာသည်
ဆီလီကွန်ကို ကြိမ်နှုန်းမြင့်လှိုင်းဖြင့် အပိုင်းအခြားအလိုက် အပူ‌ပေးရင်း အရည်‌ပျော်သည့် ဆီလီကွန်ကို ပုံ‌ဆောင်ခဲ ဖြစ်လာ‌အောင် ပြုလုပ်သည့်နည်းပင်ဖြစ်သည်။
တစ်ပိုင်းလျှပ်ကူးပစ္စည်းဖြစ်‌သော ဆီလီကွန်‌ပေါ်တွင် လုံးလုံး
လျားလျား မှီခို‌နေသည်။ ဆီလီကွန်ပုံ‌ဆောင်ခဲကို ‌ချော့ကရား
စကီးနည်း (Czochralski method) ဖြင့် ထုတ်လုပ်‌လေ့ ရှိကြ
သည်။ ၁၄၀၀၀ ဒီဂရီစင်တီဂရိတ်အထိ အပူချိန်မြှင့်ထား‌သော
အရည်‌ပျော် ဆီလီကွန်မျက်နှာပြင်‌ပေါ်တွင် ခဲတံအရွယ်ရှိ
ပုံ‌ဆောင်ခဲအ‌စေ့ကို နှစ်ပြီး အထက်သို့ တဖြည်းဖြည်း
ဆွဲတင်ယူသည်။ ဆီလီကွန်ပုံ‌ဆောင်ခဲကို ကူးသန်းဇုန်နည်း
(float-zone methoိ) ဖြင့်လည်း ထုတ်လုပ်ကြသည်။
ဆီလီကွန်ကို ကြိမ်နှုန်းမြင့်လှိုင်းဖြင့် အပိုင်းအခြားအလိုက်
အပူ‌ပေးရင်း အရည်‌ပျော်သည့် ဆီလီကွန်ကို ပုံ‌ဆောင်ခဲ
ဖြစ်လာ‌အောင် ပြုလုပ်သည့်နည်းပင်ဖြစ်သည်။


၇ရှိလာသည့် ဆီလီကွန်အတုံးမှာ အချင်း ၁၀ စင်တီမီတာမှ
၇ရှိလာသည့် ဆီလီကွန်အတုံးမှာ အချင်း ၁၀ စင်တီမီတာမှ ၁၅ စင်တီမီတာ၊ အလျား ၁ ဒသမ ၅ မီတာမှ ၂ မီတာ ရှိသည်။ ယင်းကို အထူ ဝ ဒသမ ၃ မှ ဝ ဒသမ ၄ မီလီမီတာရှိ ‌ဝေဖာ (wafer)များ၇ရှိ‌အောင် ခွဲစိတ်ယူသည်။ ယင်း‌ဝေဖာ‌ပေါ်တွင် အင်တီဂရိတ်တက်ဆာကစ်များကို
၁၅ စင်တီမီတာ၊ အလျား ၁ ဒသမ ၅ မီတာမှ ၂ မီတာ
ရှိသည်။ ယင်းကို အထူ ဝ ဒသမ ၃ မှ ဝ ဒသမ ၄ မီလီ
မီတာရှိ ‌ဝေဖာ (wafer)များ၇ရှိ‌အောင် ခွဲစိတ်ယူသည်။
ယင်း‌ဝေဖာ‌ပေါ်တွင် အင်တီဂရိတ်တက်ဆာကစ်များကို
တည်‌ဆောက်ယူသည်။
တည်‌ဆောက်ယူသည်။


အင်တီဂရိတ်တက်ဆာကစ်တစ်ခုသည် အလျားနှင့်အနံ ၁ဒသမ ၅ မီလီမီတာခန့်စီရှိ‌သော ‌လေး‌ထောင့် အရွယ်ရှိ ဆီလီကွန်ချစ် (chip)တစ်ခု ဖြစ်သည်။ အချင်း ၁၀ စင်တီ မီတာမှ ၁၅ စင်တီမီတာရှိ ဆီလီကွန် ‌ဝေဖာတစ်ခုမှ အင်တီ ဂရိတ်တက် ဆာကစ်‌ပေါင်း ဆီလီကွန်‌ဝေဖာတစ်ခုမှ အင်တီ ဂရိတ်တက် ဆာကစ်‌ပေါင်း တစ်‌သောင်းခန့်ကို တစ်ကြိမ်တည်း တည်‌ဆောက်ယူနိုင်သည်။ ဤမျှ‌သေးငယ်‌သော ချစ်တစ်ခု
အင်တီဂရိတ်တက်ဆာကစ်တစ်ခုသည် အလျားနှင့်အနံ
ထဲတွင် ထရန်စစ္စတာစသည့် အဲလိမင့်များကို ‌သောင်းချီပြီး တင်ထားနိုင်ရန် စီမံရသည်မှာ လွယ်ကူသည့်အလုပ် မဟုတ်‌ပေ။
၁ဒသမ ၅ မီလီမီတာခန့်စီရှိ‌သော ‌လေး‌ထောင့် အရွယ်ရှိ
ဆီလီကွန်ချစ် (chip)တစ်ခု ဖြစ်သည်။ အချင်း ၁၀ စင်တီ
မီတာမှ ၁၅ စင်တီမီတာရှိ ဆီလီကွန် ‌ဝေဖာတစ်ခုမှ အင်တီ
ဂရိတ်တက် ဆာကစ်‌ပေါင်း ဆီလီကွန်‌ဝေဖာတစ်ခုမှ အင်တီ
ဂရိတ်တက် ဆာကစ်‌ပေါင်း တစ်‌သောင်းခန့်ကို တစ်ကြိမ်တည်း
တည်‌ဆောက်ယူနိုင်သည်။ ဤမျှ‌သေးငယ်‌သော ချစ်တစ်ခု
ထဲတွင် ထရန်စစ္စတာစသည့် အဲလိမင့်များကို ‌သောင်းချီပြီး
တင်ထားနိုင်ရန် စီမံရသည်မှာ လွယ်ကူသည့်အလုပ် မဟုတ်‌ပေ။


ဆာကစ်ပတ်လမ်းတို့၏ လိုင်းအကျယ်မှာ ဝ ဒသမ ၅ မိုက် ခရွန်အထိ ကျဉ်း‌မြောင်းသွားနိုင်မည်ဟု သိပ္ပံပညာရှင်များက ‌မျှော်မှန်းထားကြသည်။ (တစ်မိုက်ခရွန်သည် တစ်စင်တီမီတာ၏ တစ်‌သောင်းပုံ တစ်ပုံရှိသည်။) ထို့အတွက် ယခုအချိန်အခါတွင် ကွန်ပျူတာ အ‌ထောက်အကူယူသည့် ဒီဇိုင်းစနစ် (computer-aided design system)ဖြင့် အင်တီဂရိတ်တက် ဆာကစ်များကို ထုတ်လုပ်‌နေကြသည်။ ကွန်ပျူတာ အစိတ်အပိုင်းတစ်ခုဖြစ်‌သော အင်တီဂရိတ်တက်ဆာကစ်ကို ကွန်ပျူတာက စီမံခန့်ခွဲသည့် ‌ခေတ်ဟု ‌ခေါ်ဆိုရမည် ဖြစ်သည်။ ဆီလီကွန် ‌ဝေဖာ‌ပေါ်၌ တစ်ပိုင်းလျှပ်ကူးပစ္စည်းများကို ဖန်တီးယူပြီး အချင်းချင်း
ဆာကစ်ပတ်လမ်းတို့၏ လိုင်းအကျယ်မှာ ဝ ဒသမ ၅ မိုက်
ဆက်သွယ်မှုများ ပြုလုပ်၍ အင်တီဂရိတ်တက်ဆာကစ်ကို တည်‌ဆောက်ယူသည်။ ဆီလီကွန်ဖြင့်ပြီး‌သော ‌ဝေဖာ၏ တစ် ‌နေရာ၌ မီးစုန်း၊ သို့မဟုတ် ဗိုရွန်ဒြပ်စင်အချို့ကို အပူချိန်တစ်ခု ၌ စိမ့်ဝင်‌စေသည်။ ထို့ပြင် အလူမီနီယမ်သတ္တုကို အလွှာပါး တင်ပြီး လိုအပ်‌သော ဆက်သွယ်မှုများကို ပြုလုပ်ရသည်။
ခရွန်အထိ ကျဉ်း‌မြောင်းသွားနိုင်မည်ဟု သိပ္ပံပညာရှင်များက
‌မျှော်မှန်းထားကြသည်။ (တစ်မိုက်ခရွန်သည် တစ်စင်တီမီတာ၏
တစ်‌သောင်းပုံ တစ်ပုံရှိသည်။) ထို့အတွက် ယခုအချိန်အခါတွင်
ကွန်ပျူတာ အ‌ထောက်အကူယူသည့် ဒီဇိုင်းစနစ် (computer-
aided design system)ဖြင့် အင်တီဂရိတ်တက် ဆာကစ်များကို
ထုတ်လုပ်‌နေကြသည်။ ကွန်ပျူတာ အစိတ်အပိုင်းတစ်ခုဖြစ်‌သော
အင်တီဂရိတ်တက်ဆာကစ်ကို ကွန်ပျူတာက စီမံခန့်ခွဲသည့်
‌ခေတ်ဟု ‌ခေါ်ဆိုရမည် ဖြစ်သည်။ ဆီလီကွန် ‌ဝေဖာ‌ပေါ်၌
တစ်ပိုင်းလျှပ်ကူးပစ္စည်းများကို ဖန်တီးယူပြီး အချင်းချင်း
ဆက်သွယ်မှုများ ပြုလုပ်၍ အင်တီဂရိတ်တက်ဆာကစ်ကို
တည်‌ဆောက်ယူသည်။ ဆီလီကွန်ဖြင့်ပြီး‌သော ‌ဝေဖာ၏ တစ်
‌နေရာ၌ မီးစုန်း၊ သို့မဟုတ် ဗိုရွန်ဒြပ်စင်အချို့ကို အပူချိန်တစ်ခု
၌ စိမ့်ဝင်‌စေသည်။ ထို့ပြင် အလူမီနီယမ်သတ္တုကို အလွှာပါး
တင်ပြီး လိုအပ်‌သော ဆက်သွယ်မှုများကို ပြုလုပ်ရသည်။


အင်တီဂရိတ်တက် ဆာကစ်တစ်ခုကို တည်‌ဆောက်ရန် ‌ဝေဖာကို ပြုပြင်ရာ၌ ဖိုတိုလစ်သိုဂရပ်ဖီနှင့် ဖိုတို အက်ချင်း နည်းပညာများကို အသုံးပြုရသည်။ မျိုးကွဲဒြပ်စင် အချို့ကို စိမ့်ဝင်‌စေပြီး အလူမီနီယမ်ကို အလွှာပါးတင်မည့် ဆီလကွန် ‌ဝေဖာ၏ တစ်စိတ်တစ်‌ဒေသကို ခရမ်းလွန်အလင်းဖြင့်ထိုးပြီး ပြုပြင်‌ပြောင်းလဲ‌စေ‌သော လုပ်ငန်းကို ဖိုတိုလစ်သိုဂရပ်ဖီ (photolithography)ဟု‌ခေါ်သည်။ ဖိုတိုလစ်သိုဂရပ်ဖီ
အင်တီဂရိတ်တက် ဆာကစ်တစ်ခုကို တည်‌ဆောက်ရန်
နည်းပညာထက် ပိုမို၍ အစွမ်းထက်‌သော အီလက်ထရွန်းနစ် လစ်သိုဂရပ်ဖီ(electron beam lithography)နှင့် အိပ်က်စ် ‌ရောင်ခြည် လစ်သိုဂရပ်ဖီ(X-ray lithography) တို့ကိုလည်း အသုံးပြုကြသည်။ အီလက်ထရွန်တန်း လစ်သိုဂရပ်ဖီ နည်း ပညာကို အသုံးပြုလျှင် အင်တီဂရိတ်တက်ဆာကစ်အဆင့် (pattern)ကို ဆင့်ပွားကူး‌ပေး နိုင်သည့်အဖုံး (mask)ကို ပြုလုပ်နိုင်သည်။ ထိုအဖုံးကို အသုံးပြု၍ အိပ်က်စ်‌ရောင်ခြည်၊ သို့မဟုတ် ခရမ်းလွန် ‌ရောင်ခြည်ဖြင့် ‌ဝေဖာ‌ပေါ်တွင် ဆာကစ် အဆင်များကို ‌ဖော်ယူနိုင်သည်။ အီလက်ထရွန်တန်းကိ ဝ
‌ဝေဖာကို ပြုပြင်ရာ၌ ဖိုတိုလစ်သိုဂရပ်ဖီနှင့် ဖိုတို အက်ချင်း
ဒသမ ၅ မိုက်ခရွန်အရွယ်ရှိ အစက်တစ်စက်ဖြစ်‌အောင် စုဆုံ ‌စေပြီး ဆီလီကွန်မျက်နှာပြင်‌ပေါ်တွင် တိုက်ရိုက်အဆင်များ ‌ဖော်ယူနိုင်သည့် နည်းများလည်း ရှိသည်။
နည်းပညာများကို အသုံးပြုရသည်။ မျိုးကွဲဒြပ်စင် အချို့ကို
စိမ့်ဝင်‌စေပြီး အလူမီနီယမ်ကို အလွှာပါးတင်မည့် ဆီလကွန်
‌ဝေဖာ၏ တစ်စိတ်တစ်‌ဒေသကို ခရမ်းလွန်အလင်းဖြင့်ထိုးပြီး
ပြုပြင်‌ပြောင်းလဲ‌စေ‌သော လုပ်ငန်းကို ဖိုတိုလစ်သိုဂရပ်ဖီ
(photolithography)ဟု‌ခေါ်သည်။ ဖိုတိုလစ်သိုဂရပ်ဖီ
နည်းပညာထက် ပိုမို၍ အစွမ်းထက်‌သော အီလက်ထရွန်းနစ်
လစ်သိုဂရပ်ဖီ(electron beam lithography)နှင့် အိပ်က်စ်
‌ရောင်ခြည် လစ်သိုဂရပ်ဖီ(X-ray lithography) တို့ကိုလည်း
အသုံးပြုကြသည်။ အီလက်ထရွန်တန်း လစ်သိုဂရပ်ဖီ နည်း
ပညာကို အသုံးပြုလျှင် အင်တီဂရိတ်တက်ဆာကစ်အဆင့်
(pattern)ကို ဆင့်ပွားကူး‌ပေး နိုင်သည့်အဖုံး (mask)ကို
ပြုလုပ်နိုင်သည်။ ထိုအဖုံးကို အသုံးပြု၍ အိပ်က်စ်‌ရောင်ခြည်၊
သို့မဟုတ် ခရမ်းလွန် ‌ရောင်ခြည်ဖြင့် ‌ဝေဖာ‌ပေါ်တွင် ဆာကစ်
အဆင်များကို ‌ဖော်ယူနိုင်သည်။ အီလက်ထရွန်တန်းကိ ဝ
ဒသမ ၅ မိုက်ခရွန်အရွယ်ရှိ အစက်တစ်စက်ဖြစ်‌အောင် စုဆုံ
‌စေပြီး ဆီလီကွန်မျက်နှာပြင်‌ပေါ်တွင် တိုက်ရိုက်အဆင်များ
‌ဖော်ယူနိုင်သည့် နည်းများလည်း ရှိသည်။


ဖိုတိုအက်ချင်းနည်းပညာ (photoetching)မှာ အဆိုပါ ဆီလီကွန်‌ဝေဖာ‌ပေါ်၌ ဖိုတိုရီဇစ်(photoresist)ကို ဖုံးအုပ်ကာ အလင်း‌ရောင်ဖြင့် ဓာတ်ပြု‌စေပြီး ဆာကစ်အဆင်များကို လိုအပ်သလို ပုံ‌ဖော်ယူ‌သောလုပ်ငန်း ဖြစ်သည်။ ယခုအခါ လျှပ်ထုတ်မှု (discharge)ကို အ‌ခြေပြုထား‌သော ပလာစမာ အက်ချင်း (plasma etching) နည်းပညာကိုလည်း အသုံးပြု‌နေ ကြသည်။ အင်တီဂရိတ်တက် ဆာကစ်တခု ဖြစ်လာသည်အထိ လစ်သိုဂရပ်ဖီနှင့်အက်ချင်းလုပ်ငန်းကို ‌ခြောက်ကြိမ်မှ ၁၀ ကြိမ် အထိ အဖန်တလဲလဲ ပြုလုပ်ကြရသည်။
ဖိုတိုအက်ချင်းနည်းပညာ (photoetching)မှာ အဆိုပါ
အင်တီဂရိတ်တက်ဆာကစ်တခုကို ပါဝင်‌သော ထရန်စစ္စတာ တည်‌ဆောက်ပုံ၊ အသုံးချပုံ၊ အသုံးပြုထား‌သော ပစ္စည်းတို့ကို လိုက်၍ အမျိုးအစားခွဲခြားနိုင်သည်။ ထရန်စစ္စတာ တည် ‌ဆောက်ပုံအရ ခွဲခြားမည် ဆိုလျှင် သတ္တု-အောက်ဆိုဒ်-တစ်ပိုင်းလျှပ်ကူး (metal- oxide-semiconductor) အမျိုး အစားနှင့် ဒွိပိုလာ (bipolar)အမျိုးအစားဟူ၍ နှစ်မျိုးခွဲခြားနိုင် သည်။ MOS အမျိုးအစားတွင် NMOS နှင့် CMOS ဟူ၍ နှစ်မျိုး ထပ်ခွဲခြားနိုင်‌သေးသည်။ NMOS အမျိုးအစားသည် ညှပ်သိပ်မှု ပို‌ကောင်းသဖြင့် DRAM (dynamic random
ဆီလီကွန်‌ဝေဖာ‌ပေါ်၌ ဖိုတိုရီဇစ်(photoresist)ကို ဖုံးအုပ်ကာ
access memory ) အဖြစ် အသုံးပြုကြသည်။ DRAM သည် ထရန်စစ္စတာ တစ်လုံးတည်းဖြင့် အချက်အလက်တစ်ခုကို သို‌လှောင်‌ပေးသဖြင့် အချက်အလက်ကို ဖတ်‌ပေးရင်း ‌ရေး‌ပေး နိုင်သည်။ NMOS အမျိုးအစားနှင့်စာလျှင် CMOS အမျိုးအစား သည် တုံ့ပြန်မှု ‌နှေး‌ကွေးပြီး စွမ်းအားဖြုန်းတီးမှု အလွန် နည်း သဖြင့် ဓာတ်ခဲကို ကြာရှည်အသုံးပြုနိုင်‌သော လက်ပတ်နာရီ ကဲ့သို့‌သော ကုန်ပစ္စည်းများတွင် အသုံးပြုလျက် ရှိ၏။ ဒွိပိုလာ အမျိုးအစား အင်တီဂရိတ်တက်ဆာကစ်မှာ စွမ်းအားဖြုန်းတီးမှု ကြီး‌သော်လည်း တုံ့ပြန်မှု အလွန်လျင်မြန်သည်။ ထို့အတွက် အလွန်လျင်မြန်စွာ တွက်ချက်နိုင်‌သော ကွန်ပျူတာများတွင် အသုံးပြုကြသည်။
အလင်း‌ရောင်ဖြင့် ဓာတ်ပြု‌စေပြီး ဆာကစ်အဆင်များကို
လိုအပ်သလို ပုံ‌ဖော်ယူ‌သောလုပ်ငန်း ဖြစ်သည်။ ယခုအခါ
လျှပ်ထုတ်မှု (discharge)ကို အ‌ခြေပြုထား‌သော ပလာစမာ
အက်ချင်း (plasma etchinါ) နည်းပညာကိုလည်း အသုံးပြု‌နေ
ကြသည်။ အင်တီဂရိတ်တက် ဆာကစ်တခု ဖြစ်လာသည်အထိ
လစ်သိုဂရပ်ဖီနှင့်အက်ချင်းလုပ်ငန်းကို ‌ခြောက်ကြိမ်မှ ၁၀ ကြိမ်
အထိ အဖန်တလဲလဲ ပြုလုပ်ကြရသည်။
အင်တီဂရိတ်တက်ဆာကစ်တခုကို ပါဝင်‌သော ထရန်စစ္စတာ
တည်‌ဆောက်ပုံ၊ အသုံးချပုံ၊ အသုံးပြုထား‌သော ပစ္စည်းတို့ကို
လိုက်၍ အမျိုးအစားခွဲခြားနိုင်သည်။ ထရန်စစ္စတာ တည်
‌ဆောက်ပုံအရ ခွဲခြားမည် ဆိုလျှင် သတ္တု-အောက်ဆိုဒ်-
တစ်ပိုင်းလျှပ်ကူး (metal- oxide-semiconductor) အမျိုး
အစားနှင့် ဒွိပိုလာ (bipolar)အမျိုးအစားဟူ၍ နှစ်မျိုးခွဲခြားနိုင်
သည်။ MOS အမျိုးအစားတွင် NMOS နှင့် CMOS ဟူ၍
နှစ်မျိုး ထပ်ခွဲခြားနိုင်‌သေးသည်။ NMOS အမျိုးအစားသည်
ညှပ်သိပ်မှု ပို‌ကောင်းသဖြင့် DRAM (dynamic random
access memory ) အဖြစ် အသုံးပြုကြသည်။ DRAM သည်
ထရန်စစ္စတာ တစ်လုံးတည်းဖြင့် အချက်အလက်တစ်ခုကို
သို‌လှောင်‌ပေးသဖြင့် အချက်အလက်ကို ဖတ်‌ပေးရင်း ‌ရေး‌ပေး
နိုင်သည်။ NMOS အမျိုးအစားနှင့်စာလျှင် CMOS အမျိုးအစား
သည် တုံ့ပြန်မှု ‌နှေး‌ကွေးပြီး စွမ်းအားဖြုန်းတီးမှု အလွန် နည်း
သဖြင့် ဓာတ်ခဲကို ကြာရှည်အသုံးပြုနိုင်‌သော လက်ပတ်နာရီ
ကဲ့သို့‌သော ကုန်ပစ္စည်းများတွင် အသုံးပြုလျက် ရှိ၏။ ဒွိပိုလာ
အမျိုးအစား အင်တီဂရိတ်တက်ဆာကစ်မှာ စွမ်းအားဖြုန်းတီးမှု
ကြီး‌သော်လည်း တုံ့ပြန်မှု အလွန်လျင်မြန်သည်။ ထို့အတွက်
အလွန်လျင်မြန်စွာ တွက်ချက်နိုင်‌သော ကွန်ပျူတာများတွင်
အသုံးပြုကြသည်။


အင်တီဂရိတ်တက် ဆာကစ်ကို အသုံးချပုံကိုလိုက်၍ RAM နှင့် ROM ဟု ‌ခေါ်ဆို‌သော မှတ်ဉာဏ်ယူနစ်များအဖြစ် လည်း ‌ကောင်း၊ တွက်ချက်မှုနှင့် ထိန်းချုပ်မှုကို ပြုလုပ်‌ပေးနိုင်‌သော မိုက်ခရိုပရိုဆက်ဆာအဖြစ် လည်း‌ကောင်း ခွဲခြားနိုင်သည်။ ROM မှာ ဖတ်‌ပေးရုံ သက်သက် မှတ်ဉာဏ်ယူနစ်မျိုး ဖြစ်ပြီး စွမ်းအား ပင်ရင်းကိုဖြတ်‌တောက် ပစ်လိုက်‌သော်လည်း အချက် အလက်များ မ‌ပျောက်ပျက်ဘဲ ဆက်လက် သို‌လှောင် ထားနိုင် သည်။ ယခုအခါ ခရမ်းလွန်‌ရောင်ခြည်ကို အသုံးပြု၍ မှတ်ဉာဏ်ယူနစ်ကို ‌ဖျောက်ဖျက်နိုင်‌သော EPROM နှင့် လျှပ်စစ်ဖြင့် မှတ်ဉာဏ်ယူနစ်ကို ‌ဖျောက်ဖျက်နိုင်‌သော EEPROM စသည်တို့ ‌ပေါ်ထွက်လျက် ရှိသည်။ ထို့ပြင် ဆီလီကွန်ကို အ‌ခြေခံထား‌သောပစ္စည်းနှင့် ဆီလီကွန်ကို အ‌ခြေခံထားသည့် ပစ္စည်းများ ပါဝင်သည့် စင်တီဂရိတ်တက် ဆာကစ်များ ‌ပေါ်ထွက်‌နေသည်။ ဆီလီကွန်ကို အ‌ခြေခံ ထား‌သော ပစ္စည်းများကို SOI (Silicon-on-Isulator) နည်းပညာများဖြင့် ပြုလုပ်သည်။ ဆီလီကွန်အစား ဂဲလီယမ်
အင်တီဂရိတ်တက် ဆာကစ်ကို အသုံးချပုံကိုလိုက်၍ RAM
အာစီနိုဒ် (GaAs) ဂလီယမ် အလူမီနီယမ် အာစီနိုဒ် (GaAlAs)နှင့် အင်ဒီယမ်ဖို့စဖိုဒ် (InP)စသည့် ဒြပ်‌ပေါင်း တစ်ပိုင်း လျှပ်ကူးကို အ‌ခြေခံထား‌သော အင်တီဂရိတ်တက် ဆာကစ်များမှာမူ လက်‌တွေ့ စမ်းသပ်သည့် အဆင့်တွင်သာ ရှိ‌နေပြီး ဂျပန်နှင့် အ‌မေရိကန်ပညာရှင်များက အထူးစိတ်ဝင်စား‌နေကြသည်။ SOI နည်းပညာကို အ‌ခြေပြုထား‌သော သုံးဘက် တိုင်း အင်တီဂရိတ်တက် ဆာကစ်များ၊ ဆူပါလက်တစ် ပစ္စည်းများ (superlattice devices)နှင့် စစ်‌မြေပြင်သုံးအကြမ်းခံ အင်တီဂရိတ်တက်ဆာကစ်များ၊ ဂျိုဆက်အင်ဆုံဆက် (Joesph-son junction)ပစ္စည်းများသည် မကြာမီ အချိန်အတွင်း အသုံး ချနိုင်သည့် အဆင့်သို့ ‌ရောက်ရှိမည့်ဟု ‌မျှော်လင့်ရသည်။
နှင့် ROM ဟု ‌ခေါ်ဆို‌သော မှတ်ဉာဏ်ယူနစ်များအဖြစ် လည်း
‌ကောင်း၊ တွက်ချက်မှုနှင့် ထိန်းချုပ်မှုကို ပြုလုပ်‌ပေးနိုင်‌သော
မိုက်ခရိုပရိုဆက်ဆာအဖြစ် လည်း‌ကောင်း ခွဲခြားနိုင်သည်။
ROM မှာ ဖတ်‌ပေးရုံ သက်သက် မှတ်ဉာဏ်ယူနစ်မျိုး ဖြစ်ပြီး
စွမ်းအား ပင်ရင်းကိုဖြတ်‌တောက် ပစ်လိုက်‌သော်လည်း အချက်
အလက်များ မ‌ပျောက်ပျက်ဘဲ ဆက်လက် သို‌လှောင် ထားနိုင်
သည်။ ယခုအခါ ခရမ်းလွန်‌ရောင်ခြည်ကို အသုံးပြု၍
မှတ်ဉာဏ်ယူနစ်ကို ‌ဖျောက်ဖျက်နိုင်‌သော EPROM နှင့်
လျှပ်စစ်ဖြင့် မှတ်ဉာဏ်ယူနစ်ကို ‌ဖျောက်ဖျက်နိုင်‌သော
EEPROM စသည်တို့ ‌ပေါ်ထွက်လျက် ရှိသည်။ ထို့ပြင်
ဆီလီကွန်ကို အ‌ခြေခံထား‌သောပစ္စည်းနှင့် ဆီလီကွန်ကို
အ‌ခြေခံထားသည့် ပစ္စည်းများ ပါဝင်သည့် စင်တီဂရိတ်တက်
ဆာကစ်များ ‌ပေါ်ထွက်‌နေသည်။ ဆီလီကွန်ကို အ‌ခြေခံ
ထား‌သော ပစ္စည်းများကို SOI (Silicon-on-Isulator)
နည်းပညာများဖြင့် ပြုလုပ်သည်။ ဆီလီကွန်အစား ဂဲလီယမ်
အာစီနိုဒ် (GaAs) ဂလီယမ် အလူမီနီယမ် အာစီနိုဒ် (GaAlAs)
နှင့် အင်ဒီယမ်ဖို့စဖိုဒ် (InP)စသည့် ဒြပ်‌ပေါင်း တစ်ပိုင်း
လျှပ်ကူးကို အ‌ခြေခံထား‌သော အင်တီဂရိတ်တက် ဆာကစ်
များမှာမူ လက်‌တွေ့ စမ်းသပ်သည့် အဆင့်တွင်သာ ရှိ‌နေပြီး
ဂျပန်နှင့် အ‌မေရိကန်ပညာရှင်များက အထူးစိတ်ဝင်စား‌နေ
ကြသည်။ SOI နည်းပညာကို အ‌ခြေပြုထား‌သော သုံးဘက်
တိုင်း အင်တီဂရိတ်တက် ဆာကစ်များ၊ ဆူပါလက်တစ်
ပစ္စည်းများ (superlattice devices)နှင့် စစ်‌မြေပြင်သုံးအကြမ်းခံ
အင်တီဂရိတ်တက်ဆာကစ်များ၊ ဂျိုဆက်အင်ဆုံဆက် (Joesph-
son junction)ပစ္စည်းများသည် မကြာမီ အချိန်အတွင်း အသုံး
ချနိုင်သည့် အဆင့်သို့ ‌ရောက်ရှိမည့်ဟု ‌မျှော်လင့်ရသည်။


==ကိုးကား==
==ကိုးကား==

၀၁:၃၇၊ ၅ ဇူလိုင် ၂၀၁၁ ရက်နေ့က မူ

ယခု‌ခေတ်သည် မိုက်ခရို အီလက်ထရွန်းနစ်‌ခေတ် ဖြစ်သည်။ မိုက်ခရိုအီလက် ထရွန်းနစ် ဆိုသည်မှာ မိုနိုလစ်သစ် အင်တီဂရိတ်တက် ဆာကစ်များ (monolithic integrated circuits)၊ အလွှာထူ ဟိုက်ဗရစ် ဆာကစ်များ (thick-film hybrid circuits)နှင့် အလွှာပါး ဟိုက်ဗရစ် ဆာကစ်မျာ;(thin-film hybrid circuits) များ၏ ဒီဇိုင်းဆွဲခြင်း၊ တည်‌ဆောက်ခြင်းနှင့် အသုံးပြုခြင်းတို့နှင့် သက်ဆိုင်‌သော ဘာသာရပ်ကို ‌ခေါ်သည်။

မိုက်ခရိုအီလက်ထရွန်းနစ် ဘာသာရပ်သည် တစ်ဟုန်ထိုး တိုးတက်လျက် ရှိ‌နေသည်အမျှ အင်တီဂရိတ် တက်ဆာကစ် များ၏ အရွယ်အစားသည် ‌သေးငယ်လာပြီး စရိတ်လည်း သက်သာလာသည်။ အင်တီဂရိတ် တက်ဆာကစ်များ တိုးတက် ‌ကောင်းမွန်လာ‌စေရန် တစ်ပိုင်းလျှပ်ကူးပစ္စည်းများကို ‌သေးငယ် နိုင်သမျှ ‌သေးငယ်‌အောင် ပြုလုပ်ရန် လိုအပ်သည်။ ဆီလီကွန် ချစ် (chip)တစ်ခု‌ပေါ်တွင် တင်ထားနိုင်‌သော ထရန်စစ္စတာဒိုင်အုတ်၊ လျှပ်ခံနှင့် လျှပ်သိုစသည့် ဆာကစ်အဲလိမင့်(circuit element) အ‌ရေအတွက်သည် အလွန်အမင်း တိုးတက်လျက် ရှိ‌နေသည်။ ချစ်တစ်ခုအ‌ပေါ်တွင် အဲလိမင့် ၆ဝခန့် တင်ထာ ‌သော အ‌သေးစား အင်တီဂ‌ရေးရှင်း (small-scale integration)၊ အဲလိမင့်‌ပေါင်း ၂၀၀ မှ ၃၀၀ အထိ တင်ထား‌သော အလတ်စားအင်တီဂ‌ရေးရှင်း (medium-scale integration)နှင့် အဲလိမင့် ၁၀၀၀ ‌ကျော် တင်ထား‌သော အကြီးစား အင်တီဂ‌ရေးရှင်း (large-scale integration)များမှ တဆင့် အဲလိမင့် ၁၀၀၀၀ နှင့် အထက်ကို တင်ထား‌သော အလွန်ကြီး‌သော အင်တီဂ‌ရေးရှင်း (very-large-scale intergration)များအထိ လျင်မြန်စွာ တိုးတက် ‌ပြောင်းလဲ လာခဲ့ပြီ ဖြစ်သည်။ ထိုထက်မက‌သော အဲလိမင့်ကို တင်ထား နိုင်သည် အလွန့်အလွန် အကြီးစား အင်တီဂ‌ရေးရှင်း (ultra- large-scale intergration)ခေတ်သည် မ‌ဝေးလှ‌တော့ဟုပင် ဆိုရမည် ဖြစ်သည်။

မိုနိုလစ်သစ် အင်တီဂရိတ်တက် ဆာကစ် နည်းပညာသည်တစ်ပိုင်းလျှပ်ကူးပစ္စည်းဖြစ်‌သော ဆီလီကွန်‌ပေါ်တွင် လုံးလုံး လျားလျား မှီခို‌နေသည်။ ဆီလီကွန်ပုံ‌ဆောင်ခဲကို ‌ချော့ကရား စကီးနည်း (Czochralski method) ဖြင့် ထုတ်လုပ်‌လေ့ ရှိကြ သည်။ ၁၄၀၀၀ ဒီဂရီစင်တီဂရိတ်အထိ အပူချိန်မြှင့်ထား‌သော အရည်‌ပျော် ဆီလီကွန်မျက်နှာပြင်‌ပေါ်တွင် ခဲတံအရွယ်ရှိ ပုံ‌ဆောင်ခဲအ‌စေ့ကို နှစ်ပြီး အထက်သို့ တဖြည်းဖြည်း ဆွဲတင်ယူသည်။ ဆီလီကွန်ပုံ‌ဆောင်ခဲကို ကူးသန်းဇုန်နည်း (float-zone method) ဖြင့်လည်း ထုတ်လုပ်ကြသည်။ ဆီလီကွန်ကို ကြိမ်နှုန်းမြင့်လှိုင်းဖြင့် အပိုင်းအခြားအလိုက် အပူ‌ပေးရင်း အရည်‌ပျော်သည့် ဆီလီကွန်ကို ပုံ‌ဆောင်ခဲ ဖြစ်လာ‌အောင် ပြုလုပ်သည့်နည်းပင်ဖြစ်သည်။

၇ရှိလာသည့် ဆီလီကွန်အတုံးမှာ အချင်း ၁၀ စင်တီမီတာမှ ၁၅ စင်တီမီတာ၊ အလျား ၁ ဒသမ ၅ မီတာမှ ၂ မီတာ ရှိသည်။ ယင်းကို အထူ ဝ ဒသမ ၃ မှ ဝ ဒသမ ၄ မီလီမီတာရှိ ‌ဝေဖာ (wafer)များ၇ရှိ‌အောင် ခွဲစိတ်ယူသည်။ ယင်း‌ဝေဖာ‌ပေါ်တွင် အင်တီဂရိတ်တက်ဆာကစ်များကို တည်‌ဆောက်ယူသည်။

အင်တီဂရိတ်တက်ဆာကစ်တစ်ခုသည် အလျားနှင့်အနံ ၁ဒသမ ၅ မီလီမီတာခန့်စီရှိ‌သော ‌လေး‌ထောင့် အရွယ်ရှိ ဆီလီကွန်ချစ် (chip)တစ်ခု ဖြစ်သည်။ အချင်း ၁၀ စင်တီ မီတာမှ ၁၅ စင်တီမီတာရှိ ဆီလီကွန် ‌ဝေဖာတစ်ခုမှ အင်တီ ဂရိတ်တက် ဆာကစ်‌ပေါင်း ဆီလီကွန်‌ဝေဖာတစ်ခုမှ အင်တီ ဂရိတ်တက် ဆာကစ်‌ပေါင်း တစ်‌သောင်းခန့်ကို တစ်ကြိမ်တည်း တည်‌ဆောက်ယူနိုင်သည်။ ဤမျှ‌သေးငယ်‌သော ချစ်တစ်ခု ထဲတွင် ထရန်စစ္စတာစသည့် အဲလိမင့်များကို ‌သောင်းချီပြီး တင်ထားနိုင်ရန် စီမံရသည်မှာ လွယ်ကူသည့်အလုပ် မဟုတ်‌ပေ။

ဆာကစ်ပတ်လမ်းတို့၏ လိုင်းအကျယ်မှာ ဝ ဒသမ ၅ မိုက် ခရွန်အထိ ကျဉ်း‌မြောင်းသွားနိုင်မည်ဟု သိပ္ပံပညာရှင်များက ‌မျှော်မှန်းထားကြသည်။ (တစ်မိုက်ခရွန်သည် တစ်စင်တီမီတာ၏ တစ်‌သောင်းပုံ တစ်ပုံရှိသည်။) ထို့အတွက် ယခုအချိန်အခါတွင် ကွန်ပျူတာ အ‌ထောက်အကူယူသည့် ဒီဇိုင်းစနစ် (computer-aided design system)ဖြင့် အင်တီဂရိတ်တက် ဆာကစ်များကို ထုတ်လုပ်‌နေကြသည်။ ကွန်ပျူတာ အစိတ်အပိုင်းတစ်ခုဖြစ်‌သော အင်တီဂရိတ်တက်ဆာကစ်ကို ကွန်ပျူတာက စီမံခန့်ခွဲသည့် ‌ခေတ်ဟု ‌ခေါ်ဆိုရမည် ဖြစ်သည်။ ဆီလီကွန် ‌ဝေဖာ‌ပေါ်၌ တစ်ပိုင်းလျှပ်ကူးပစ္စည်းများကို ဖန်တီးယူပြီး အချင်းချင်း ဆက်သွယ်မှုများ ပြုလုပ်၍ အင်တီဂရိတ်တက်ဆာကစ်ကို တည်‌ဆောက်ယူသည်။ ဆီလီကွန်ဖြင့်ပြီး‌သော ‌ဝေဖာ၏ တစ် ‌နေရာ၌ မီးစုန်း၊ သို့မဟုတ် ဗိုရွန်ဒြပ်စင်အချို့ကို အပူချိန်တစ်ခု ၌ စိမ့်ဝင်‌စေသည်။ ထို့ပြင် အလူမီနီယမ်သတ္တုကို အလွှာပါး တင်ပြီး လိုအပ်‌သော ဆက်သွယ်မှုများကို ပြုလုပ်ရသည်။

အင်တီဂရိတ်တက် ဆာကစ်တစ်ခုကို တည်‌ဆောက်ရန် ‌ဝေဖာကို ပြုပြင်ရာ၌ ဖိုတိုလစ်သိုဂရပ်ဖီနှင့် ဖိုတို အက်ချင်း နည်းပညာများကို အသုံးပြုရသည်။ မျိုးကွဲဒြပ်စင် အချို့ကို စိမ့်ဝင်‌စေပြီး အလူမီနီယမ်ကို အလွှာပါးတင်မည့် ဆီလကွန် ‌ဝေဖာ၏ တစ်စိတ်တစ်‌ဒေသကို ခရမ်းလွန်အလင်းဖြင့်ထိုးပြီး ပြုပြင်‌ပြောင်းလဲ‌စေ‌သော လုပ်ငန်းကို ဖိုတိုလစ်သိုဂရပ်ဖီ (photolithography)ဟု‌ခေါ်သည်။ ဖိုတိုလစ်သိုဂရပ်ဖီ နည်းပညာထက် ပိုမို၍ အစွမ်းထက်‌သော အီလက်ထရွန်းနစ် လစ်သိုဂရပ်ဖီ(electron beam lithography)နှင့် အိပ်က်စ် ‌ရောင်ခြည် လစ်သိုဂရပ်ဖီ(X-ray lithography) တို့ကိုလည်း အသုံးပြုကြသည်။ အီလက်ထရွန်တန်း လစ်သိုဂရပ်ဖီ နည်း ပညာကို အသုံးပြုလျှင် အင်တီဂရိတ်တက်ဆာကစ်အဆင့် (pattern)ကို ဆင့်ပွားကူး‌ပေး နိုင်သည့်အဖုံး (mask)ကို ပြုလုပ်နိုင်သည်။ ထိုအဖုံးကို အသုံးပြု၍ အိပ်က်စ်‌ရောင်ခြည်၊ သို့မဟုတ် ခရမ်းလွန် ‌ရောင်ခြည်ဖြင့် ‌ဝေဖာ‌ပေါ်တွင် ဆာကစ် အဆင်များကို ‌ဖော်ယူနိုင်သည်။ အီလက်ထရွန်တန်းကိ ဝ ဒသမ ၅ မိုက်ခရွန်အရွယ်ရှိ အစက်တစ်စက်ဖြစ်‌အောင် စုဆုံ ‌စေပြီး ဆီလီကွန်မျက်နှာပြင်‌ပေါ်တွင် တိုက်ရိုက်အဆင်များ ‌ဖော်ယူနိုင်သည့် နည်းများလည်း ရှိသည်။

ဖိုတိုအက်ချင်းနည်းပညာ (photoetching)မှာ အဆိုပါ ဆီလီကွန်‌ဝေဖာ‌ပေါ်၌ ဖိုတိုရီဇစ်(photoresist)ကို ဖုံးအုပ်ကာ အလင်း‌ရောင်ဖြင့် ဓာတ်ပြု‌စေပြီး ဆာကစ်အဆင်များကို လိုအပ်သလို ပုံ‌ဖော်ယူ‌သောလုပ်ငန်း ဖြစ်သည်။ ယခုအခါ လျှပ်ထုတ်မှု (discharge)ကို အ‌ခြေပြုထား‌သော ပလာစမာ အက်ချင်း (plasma etching) နည်းပညာကိုလည်း အသုံးပြု‌နေ ကြသည်။ အင်တီဂရိတ်တက် ဆာကစ်တခု ဖြစ်လာသည်အထိ လစ်သိုဂရပ်ဖီနှင့်အက်ချင်းလုပ်ငန်းကို ‌ခြောက်ကြိမ်မှ ၁၀ ကြိမ် အထိ အဖန်တလဲလဲ ပြုလုပ်ကြရသည်။ အင်တီဂရိတ်တက်ဆာကစ်တခုကို ပါဝင်‌သော ထရန်စစ္စတာ တည်‌ဆောက်ပုံ၊ အသုံးချပုံ၊ အသုံးပြုထား‌သော ပစ္စည်းတို့ကို လိုက်၍ အမျိုးအစားခွဲခြားနိုင်သည်။ ထရန်စစ္စတာ တည် ‌ဆောက်ပုံအရ ခွဲခြားမည် ဆိုလျှင် သတ္တု-အောက်ဆိုဒ်-တစ်ပိုင်းလျှပ်ကူး (metal- oxide-semiconductor) အမျိုး အစားနှင့် ဒွိပိုလာ (bipolar)အမျိုးအစားဟူ၍ နှစ်မျိုးခွဲခြားနိုင် သည်။ MOS အမျိုးအစားတွင် NMOS နှင့် CMOS ဟူ၍ နှစ်မျိုး ထပ်ခွဲခြားနိုင်‌သေးသည်။ NMOS အမျိုးအစားသည် ညှပ်သိပ်မှု ပို‌ကောင်းသဖြင့် DRAM (dynamic random access memory ) အဖြစ် အသုံးပြုကြသည်။ DRAM သည် ထရန်စစ္စတာ တစ်လုံးတည်းဖြင့် အချက်အလက်တစ်ခုကို သို‌လှောင်‌ပေးသဖြင့် အချက်အလက်ကို ဖတ်‌ပေးရင်း ‌ရေး‌ပေး နိုင်သည်။ NMOS အမျိုးအစားနှင့်စာလျှင် CMOS အမျိုးအစား သည် တုံ့ပြန်မှု ‌နှေး‌ကွေးပြီး စွမ်းအားဖြုန်းတီးမှု အလွန် နည်း သဖြင့် ဓာတ်ခဲကို ကြာရှည်အသုံးပြုနိုင်‌သော လက်ပတ်နာရီ ကဲ့သို့‌သော ကုန်ပစ္စည်းများတွင် အသုံးပြုလျက် ရှိ၏။ ဒွိပိုလာ အမျိုးအစား အင်တီဂရိတ်တက်ဆာကစ်မှာ စွမ်းအားဖြုန်းတီးမှု ကြီး‌သော်လည်း တုံ့ပြန်မှု အလွန်လျင်မြန်သည်။ ထို့အတွက် အလွန်လျင်မြန်စွာ တွက်ချက်နိုင်‌သော ကွန်ပျူတာများတွင် အသုံးပြုကြသည်။

အင်တီဂရိတ်တက် ဆာကစ်ကို အသုံးချပုံကိုလိုက်၍ RAM နှင့် ROM ဟု ‌ခေါ်ဆို‌သော မှတ်ဉာဏ်ယူနစ်များအဖြစ် လည်း ‌ကောင်း၊ တွက်ချက်မှုနှင့် ထိန်းချုပ်မှုကို ပြုလုပ်‌ပေးနိုင်‌သော မိုက်ခရိုပရိုဆက်ဆာအဖြစ် လည်း‌ကောင်း ခွဲခြားနိုင်သည်။ ROM မှာ ဖတ်‌ပေးရုံ သက်သက် မှတ်ဉာဏ်ယူနစ်မျိုး ဖြစ်ပြီး စွမ်းအား ပင်ရင်းကိုဖြတ်‌တောက် ပစ်လိုက်‌သော်လည်း အချက် အလက်များ မ‌ပျောက်ပျက်ဘဲ ဆက်လက် သို‌လှောင် ထားနိုင် သည်။ ယခုအခါ ခရမ်းလွန်‌ရောင်ခြည်ကို အသုံးပြု၍ မှတ်ဉာဏ်ယူနစ်ကို ‌ဖျောက်ဖျက်နိုင်‌သော EPROM နှင့် လျှပ်စစ်ဖြင့် မှတ်ဉာဏ်ယူနစ်ကို ‌ဖျောက်ဖျက်နိုင်‌သော EEPROM စသည်တို့ ‌ပေါ်ထွက်လျက် ရှိသည်။ ထို့ပြင် ဆီလီကွန်ကို အ‌ခြေခံထား‌သောပစ္စည်းနှင့် ဆီလီကွန်ကို အ‌ခြေခံထားသည့် ပစ္စည်းများ ပါဝင်သည့် စင်တီဂရိတ်တက် ဆာကစ်များ ‌ပေါ်ထွက်‌နေသည်။ ဆီလီကွန်ကို အ‌ခြေခံ ထား‌သော ပစ္စည်းများကို SOI (Silicon-on-Isulator) နည်းပညာများဖြင့် ပြုလုပ်သည်။ ဆီလီကွန်အစား ဂဲလီယမ် အာစီနိုဒ် (GaAs) ဂလီယမ် အလူမီနီယမ် အာစီနိုဒ် (GaAlAs)နှင့် အင်ဒီယမ်ဖို့စဖိုဒ် (InP)စသည့် ဒြပ်‌ပေါင်း တစ်ပိုင်း လျှပ်ကူးကို အ‌ခြေခံထား‌သော အင်တီဂရိတ်တက် ဆာကစ်များမှာမူ လက်‌တွေ့ စမ်းသပ်သည့် အဆင့်တွင်သာ ရှိ‌နေပြီး ဂျပန်နှင့် အ‌မေရိကန်ပညာရှင်များက အထူးစိတ်ဝင်စား‌နေကြသည်။ SOI နည်းပညာကို အ‌ခြေပြုထား‌သော သုံးဘက် တိုင်း အင်တီဂရိတ်တက် ဆာကစ်များ၊ ဆူပါလက်တစ် ပစ္စည်းများ (superlattice devices)နှင့် စစ်‌မြေပြင်သုံးအကြမ်းခံ အင်တီဂရိတ်တက်ဆာကစ်များ၊ ဂျိုဆက်အင်ဆုံဆက် (Joesph-son junction)ပစ္စည်းများသည် မကြာမီ အချိန်အတွင်း အသုံး ချနိုင်သည့် အဆင့်သို့ ‌ရောက်ရှိမည့်ဟု ‌မျှော်လင့်ရသည်။

ကိုးကား

မြန်မာ့စွယ်စုံကျမ်း အတွဲ ၅