မာတိကာသို့ ခုန်သွားရန်

ကြေးနီ

ဝီကီပီးဒီးယား မှ
ကြေးနီ  29Cu
Native copper (~4 cm in size)
ယေဘုယျ ဂုဏ်သတ္တိများ
အမည်၊ သင်္ကေတကြေးနီ, Cu
အသံထွက်/ˈkɒpər/
KOP-ər
အဆင်းred-orange metallic luster
ဒြပ်စင်အလှည့်ကျဇယားရှိ ကြေးနီ
Element 1: ဟိုက်ဒရိုဂျင် (H), Other non-metal
Element 2: ဟီလီယမ် (He), Noble gas
Element 3: လီသီယမ် (Li), Alkali metal
Element 4: ဘယ်ရီလီယမ် (Be), Alkaline earth metal
Element 5: ဘိုရွန် (B), Metalloid
Element 6: ကာဗွန် (C), Other non-metal
Element 7: နိုက်ထရိုဂျင် (N), Other non-metal
Element 8: အောက်ဆီဂျင် (O), Other non-metal
Element 9: ဖလိုရင်း (F), Halogen
Element 10: နီယွန် (Ne), Noble gas
Element 11: ဆိုဒီယမ် (Na), Alkali metal
Element 12: မဂ္ဂနီစီယမ် (Mg), Alkaline earth metal
Element 13: အလူမီနီယမ် (Al), Other metal
Element 14: ဆီလီကွန် (Si), Metalloid
Element 15: ဖော့စဖောရပ် (P), Other non-metal
Element 16: ဆာလဖာ (S), Other non-metal
Element 17: ကလိုရင်း (Cl), Halogen
Element 18: အာဂွန် (Ar), Noble gas
Element 19: ပိုတက်ဆီယမ် (K), Alkali metal
Element 20: ကယ်လဆီယမ် (Ca), Alkaline earth metal
Element 21: စကန္ဒီယမ် (Sc), Transition metal
Element 22: တိုင်‌တေနီယမ် (Ti), Transition metal
Element 23: ဗနေဒီယမ် (V), Transition metal
Element 24: ခရိုမီယမ် (Cr), Transition metal
Element 25: မက်ဂနိစ် (Mn), Transition metal
Element 26: သံ (သတ္တု) (Fe), Transition metal
Element 27: ကိုဘော့ (ဒြပ်စင်) (Co), Transition metal
Element 28: နီကယ် (Ni), Transition metal
Element 29: ကြေးနီ (Cu), Transition metal
Element 30: သွပ် (Zn), Transition metal
Element 31: ဂဲလီယမ် (Ga), Other metal
Element 32: ဂျာမေနီယမ် (Ge), Metalloid
Element 33: စိန်ဖြူ (As), Metalloid
Element 34: ဆီလီနီယမ် (Se), Other non-metal
Element 35: ဘရိုမင်း (Br), Halogen
Element 36: ကရစ်ပတွန် (Kr), Noble gas
Element 37: ရူဘီဒီယမ် (Rb), Alkali metal
Element 38: စထရွန်တီယမ် (Sr), Alkaline earth metal
Element 39: အိတ်တြီယမ် (Y), Transition metal
Element 40: ဇာကိုနီယမ် (Zr), Transition metal
Element 41: နိုင်အိုဘီယမ် (Nb), Transition metal
Element 42: မိုလိပ်ဒီနမ် (Mo), Transition metal
Element 43: တက္ကနက်တီယမ် (Tc), Transition metal
Element 44: ရက်သီနီယမ် (Ru), Transition metal
Element 45: ရိုဒီယမ် (Rh), Transition metal
Element 46: ပယ်လေဒီယမ် (Pd), Transition metal
Element 47: ငွေ (သတ္တု) (Ag), Transition metal
Element 48: ကတ်မီယမ် (Cd), Transition metal
Element 49: အိန္ဒီယမ် (In), Other metal
Element 50: သံဖြူ (Sn), Other metal
Element 51: ခနောက်စိမ်း (Sb), Metalloid
Element 52: တယ်လူရီယမ် (Te), Metalloid
Element 53: အိုင်အိုဒင်း (I), Halogen
Element 54: ဇီနွန် (Xe), Noble gas
Element 55: ဆယ်ဆီယမ် (Cs), Alkali metal
Element 56: ဘေရီယမ် (Ba), Alkaline earth metal
Element 57: လန်သနမ် (La), Lanthanoid
Element 58: ဆယ်ရီယမ် (Ce), Lanthanoid
Element 59: ပရာဆီယိုဒိုင်ယမ် (Pr), Lanthanoid
Element 60: နီယိုဒိုင်မီယမ် (Nd), Lanthanoid
Element 61: ပရိုမီသီယမ် (Pm), Lanthanoid
Element 62: ဆမ္မာရီယမ် (Sm), Lanthanoid
Element 63: ယူရိုပီယမ် (Eu), Lanthanoid
Element 64: ဂါဒိုလီနီယမ် (Gd), Lanthanoid
Element 65: တာဘီယမ် (Tb), Lanthanoid
Element 66: ဒိုင်စပရိုဆီယမ် (Dy), Lanthanoid
Element 67: ဟိုမီယမ် (Ho), Lanthanoid
Element 68: အာဘီယမ် (Er), Lanthanoid
Element 69: ကျူလီယမ် (Tm), Lanthanoid
Element 70: အိတ္တာဘီယမ် (Yb), Lanthanoid
Element 71: လူတက်သီယမ် (Lu), Lanthanoid
Element 72: ဟက်ဖ်နီယမ် (Hf), Transition metal
Element 73: တန်တလမ် (Ta), Transition metal
Element 74: တန်စတင် (W), Transition metal
Element 75: ရီနီယမ် (Re), Transition metal
Element 76: အော့စမီယမ် (Os), Transition metal
Element 77: အိုင်ရီဒီယမ် (Ir), Transition metal
Element 78: ရွှေဖြူ (Pt), Transition metal
Element 79: ရွှေ (Au), Transition metal
Element 80: ပြဒါး (Hg), Transition metal
Element 81: သယ်လီယမ် (Tl), Other metal
Element 82: ခဲ (သတ္တု) (Pb), Other metal
Element 83: ကြွပ် (Bi), Other metal
Element 84: ပိုလိုနီယမ် (Po), Metalloid
Element 85: အက်စ်တက်တိုင်း (At), Halogen
Element 86: ရေဒွန် (Rn), Noble gas
Element 87: ဖရန်စီယမ် (Fr), Alkali metal
Element 88: ရေဒီယမ် (Ra), Alkaline earth metal
Element 89: အက်တီနီယမ် (Ac), Actinoid
Element 90: သိုရီယမ် (Th), Actinoid
Element 91: ပရိုတက်တီနီယမ် (Pa), Actinoid
Element 92: ယူရေနီယမ် (U), Actinoid
Element 93: နပ်ကျူနီယမ် (Np), Actinoid
Element 94: ပလူတိုနီယမ် (Pu), Actinoid
Element 95: အမေရိစီယမ် (Am), Actinoid
Element 96: ကျူရီယမ် (Cm), Actinoid
Element 97: ဘာကီလီယမ် (Bk), Actinoid
Element 98: ကာလီဖိုနီယမ် (Cf), Actinoid
Element 99: အိုင်စ်တိုင်နီယမ် (Es), Actinoid
Element 100: ဖာမီယမ် (Fm), Actinoid
Element 101: မန်ဒယ်လီဗီယမ် (Md), Actinoid
Element 102: နိုဘယ်လီယမ် (No), Actinoid
Element 103: လော်ရန်စီယမ် (Lr), Actinoid
Element 104: ရူသာဖော်ဒီယမ် (Rf), Transition metal
Element 105: ဒပ်ဘ်နီယမ် (Db), Transition metal
Element 106: ဆီဘော်ဂျီယမ် (Sg), Transition metal
Element 107: ဘိုဟ်ရီယမ် (Bh), Transition metal
Element 108: ဟက်စ်စီယမ် (Hs), Transition metal
Element 109: မိုက်ဒ်နီရီယမ် (Mt), Transition metal
Element 110: ဒမ်စတဒ်တီယမ် (Ds), Transition metal
Element 111: ရွန့်ဂန္နီယမ် (Rg), Transition metal
Element 112: ကော့ပါနီဆီယမ် (Cn), Transition metal
Element 113: နီဟိုနီယမ် (Uut)
Element 114: ဖလရိုဗီယမ် (Uuq)
Element 115: မော်စကိုဗီယမ် (Uup)
Element 116: လီဗာမိုရီယမ် (Uuh)
Element 117: တန်နဆီး (Uus)
Element 118: အိုဂန်နက်ဆွန် (Uuo)


Cu

Ag
နီကယ်ကြေးနီသွပ်
အက်တမ် အမှတ်စဉ် (Z)29
အုပ်စုဘလော့group 11
ဒြပ်စင်အလှည့်ကျဇယားperiod 4
ဒြပ်စင် ကဏ္ဍ  transition metal
စံ အက်တောမစ် အလေးချိန် (±) (Ar)63.546(3)[]
အီလက်ထရွန် ပြုပြင်မှု[Ar] 3d10 4s1
အခွံတစ်ခုလျင် အီလက်ထရွန်ပါဝင်မှု2, 8, 18, 1
ရုပ်ပိုင်းဆိုင်ရာ ဂုဏ်သတ္တိများ
ဖေ့စ်အစိုင်အခဲ
အရည်ပျော်မှတ်1357.77 K ​(1084.62 °C, ​1984.32 °F)
အရည်ဆူမှတ်2835 K ​(2562 °C, ​4643 °F)
သိပ်သည်းမှု (အခန်းအပူချိန်)8.96 g/cm3
8.02 g/cm3
ဖျူးရှင်းအပူ13.26 kJ/mol
အငွေ့ပျံခြင်း အပူ300.4 kJ/mol
မိုလာ အပူအင်အား24.440 J/(mol·K)
ငွေ့ရည်ဖိအား
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1509 1661 1850 2089 2404 2834
အက်တောမစ် ဂုဏ်အင်များ
အောက်ဆိုဒ်ဒေးရှင်း အခြေနေ−2, +1, +2, +3, +4 ​(a mildly base oxide)
အီလက်ထရွန် ဆန့်ကျင်ဘက်ဓာတ်Pauling scale: 1.90
အိုင်ယွန်းပြုခြင်းစွမ်းအင်1st: 745.5 kJ/mol
2nd: 1957.9 kJ/mol
3rd: 3555 kJ/mol
(more)
အက်တောမစ် အချင်းဝက်empirical: 128 pm
ကိုဗေးလန့်အချင်းဝက်132±4 pm
ဗန်ဒါဝေါ့စ် အချင်းဝက်140 pm
Miscellanea
ပုံဆောင်ခဲ ဖွဲ့စည်းပုံface-centered cubic (fcc)
Face-centered cubic crystal structure for ကြေးနီ
အသံ၏အမြန်နှုန်း ပါးလွှာသော သံချောင်း(annealed)
3810 m/s (at r.t.)
အပူ ပြန့်ကားမှု16.5 µm/(m·K) (at 25 °C)
အပူစီးကူးမှု401 W/(m·K)
လျှပ်စစ် ခုခံမှု16.78 nΩ·m (at 20 °C)
သံလိုက်ဓာတ်diamagnetic[]
သံလိုက် ထိတွေ့နိုင်မှု (χmol)−5.46·10−6 cm3/mol[]
Young's modulus110–128 GPa
Shear modulus48 GPa
Bulk modulus140 GPa
ပိုင်ဆွန် အချိုး0.34
Mohs hardness3.0
Vickers hardness343–369 MPa
Brinell hardness235–878 MPa
CAS Number7440-50-8
သမိုင်းကြောင်း
အမည်တပ်ခြင်းafter Cyprus, principal mining place in Roman era (Cyprium)
ရှာဖွေတွေ့ရှိမှုအရှေ့အလယ်ပိုင်းဒေသ (ဘီစီ ၉၀၀၀)
အတည်ငြိမ်ဆုံး ကြေးနီ၏ အိုင်ဆိုတုပ်များ
iso NA သက်တမ်းဝက် DM DE (MeV) DP
63Cu 69.15% is stable with 34 neutrons
64Cu syn 12.70 h ε 64Ni
β 64Zn
65Cu 30.85% is stable with 36 neutrons
67Cu syn 61.83 h β 67Zn
ဝီကီဒေတာတွင် | | ကိုးကား

ကြေးနီ (အင်္ဂလိပ်: Copperလက်တင်: Cuprum) သည် အက်တမ်အမှတ်စဉ် ၂၉ ရှိသည့် ဒြပ်စင်တစ်မျိုးဖြစ်ပြီး ဓာတုသင်္ကေတမှာ Cu ဖြစ်သည်။ ကြေးနီသည် နီကျင်ကျင်အရောင် နှင့် ထုထည်ရှိသော ပုံဆောင်ခဲ အသွင်ရှိသည်။ သန့်စင်ထားသည့် ကြေးနီသည် ပျော့ပြောင်းကာ နန်းဆွဲရလွယ်ကူပြီး အပူနှင့် လျှပ်စစ် လျှောက်ကူးမှု ကောင်းမွန်သည့် သတ္တုဖြစ်သည်။ ကြေးနီကို လျှပ်စစ်ပစ္စည်းများတွင် နန်းကြိုးများအဖြစ် လည်းကောင်း၊ ဆောက်လုပ်ရေး ပစ္စည်းအဖြစ်လည်းကောင်း သတ္တုစပ် ပြုလုပ်ရာတွင်လည်းကောင်း အသုံးပြုကြသည်။

ကြေးနီနှင့် သတ္တုစပ်များကို လူသားများ အသုံးပြုခဲ့သည်မှာ နှစ်ထောင်နှင့်ချီရှိပြီ ဖြစ်သည်။ ရောမခေတ်တွင် ကြေးနီကို စိုက်ပရပ်စ် ဒေသတွင်သာ အဓိကတူးဖော်ကြသည်။ ကြေးနီကို စိုက်ပရပ်မှ လာသော သတ္တု Cyprium ဟုခေါ်တွင်ပြီး နောက်ပိုင်းတွင် Cuprum ဖြစ်လာသည်။

ကြေးနီသည် အနီရောင် နှင့် အဝါဖျော့ရောင် အလင်းပြန်ပြီး စုပေါင်းဖွဲ့စည်း သောပုံသဏ္ဍန် ရှိခြင်းကြောင့် အခြားမြင်နိုင်သော ရောင်စဉ်တန်းများကို စုပ်ယူပါသည်။ ကြေးနီသည် သံ (iron) ထက်ပျော့ပြောင်းပြီး ဇင့် (zinc) ထက်မာကျောပါသည်။ တောက်ပလာအောင် အရောင်တင်ပေး နိုင်သည်။ ကြေးနီကို ဒြပ်စင်အလှည့်ကျဇယား ( periodic table )၏ အုပ်စု ၁ ဘီ (IB) တွင် ငွေ (silver)၊ ရွှေ (gold) တို့ နှင့် အတူ တွေ့နိုင်သည်။ ကြေးနီ သည် ဓာတုဗေဒသတ္တိကြွ မှုနည်းပါးပြီး စိုထိုင်းသောလေထုထဲတွင် ဖြည်းဖြည်းချင်း အညှိတက်လာနိုင်သည်။ ထိုသို့ဖြစ်ဖြင်းကို ကြေးညှိတက်ခြင်း (patina) ဟုခေါ်ပါသည်။

အသုံးပြုခြင်း

[ပြင်ဆင်ရန်]
စံ ပုံသွန်းနည်းဖြင့် သွန်းလုပ်ထားသော ၉၉.၉ ရာခိုင်နှုန်း သန့်စင်သည့် ကြေနီပြား

ကြေးနီ(Copper)ကို လျှပ်စစ်နှင့် ဆက်စပ်ပစ္စည်း မှာ ၆၀%၊ ဆောက်လုပ်ရေး လုပ်ငန်းများတွင် အမိုးမိုးခြင်း၊ ပိုက်ဆက်ခြင်းများတွင်၂၀%၊ အပူပြောင်းလဲခြင်းတွင် ၁၅%၊ သတ္ထုစပ်ပစ္စည်းများတွင် ၅% အသီးသီး အသုံးပြု ကြသည်။ အဓိကကျသော ကြေးနီ သတ္ထုစပ်များမှာ ကြေးညို၊ ကြေးဝါ (copper-zinc alloy)၊ ကြေးနီ၊ သံဖြူ၊ သွပ်ရောထားသော သတ္ထု (copper-tin-zinc ၎င်းကို သေနတ်များ နှင့် ကျည်ဆန်များတွင် အသုံးပြုပါသည်။)၊ ကြေးနီနှင့် နီကယ်သတ္ထုစပ် (copper-nickel ၎င်းကို ငွေကြေး နှင့် တံဆိပ်ခေါင်း ပြုလုပ်ရာတွင် အသုံးပြုပါသည်။) ကြေးနီသည် လျှပ်စစ်ဝါယာကြိုး တပ်ဆင်ခြင်းအတွက် အကောင်းဆုံးဖြစ်သည်။ အဘယ်ကြောင့်ဆိုသော် ဝါယာကြိုးကိုကောင်းစွာ သွယ်တန်းနိုင်ခြင်း နှင့် မြင့်မားသော လျှပ်ကူးမှု ရှိခြင်းကြောင့်ဖြစ်သည်။

Chuquicamata(ချီကာ ကမတ)မိုင်းတွင်းသည် ကမ္ဘာ့အကြီးဆုံး ကြေးနီမိုင်းတစ်တခုဖြစ်သည်။

သဘာဝမှာတွေ့ရှိမှုအခြေအနေ

[ပြင်ဆင်ရန်]

ကြေးနီ(Copper)သည် သာမန်အရာ ဝတ္ထု တစ်ခုဖြစ်သည်။ ပတ်ဝန်းကျင်တွင် သဘာဝအလျှောက် ပြန့်နှံ့ နေသည်ကို တွေ့နိုင်သည်။ လူသားများသည် ကြေးနီကို စိုက်ပျိုးရေး နှင့် စက်မှုလုပ်ငန်းများတွင် အစားထိုးပစ္စည်းအဖြစ် အသုံးပြုကြသည်။ ကြေးနီ၏ အရည်အသွေးနှင့် ပတ်ဝန်းကျင်တွင် ကျယ်ပြန့်စွာ တည်ရှိခြင်းတို့ကြောင့် ဆယ်စုနှစ် များစွာကပင် ထုတ်ယူသုံးစွဲခဲ့ကြသည်။ ကမ္ဘာပေါ်တွင် ကြေးနီထုတ်လုပ်မှုသည် မြင့်တက်လျက် ရှိသည်။ သို့ဖြစ်၍ သဘာဝတွင် ကြေးနီကို ပို၍ ကုန်ဆုံးစေသည်။ မြစ်များသည် ကြေးနီပါဝင်သော စွန့်ပစ် ပစ္စည်းများကို ရွှံ့နွံများအဖြစ် ၎င်းတို့၏ ကမ်းခြေများတွင်စုပုံခြင်းဖြင့် မြစ်ကမ်းများကို ညစ်ညမ်းစေသည်။ လောင်စာဆီများ လောင်ကျွမ်း ခြင်းကြောင့် ကြေးနီသည် လေထုထဲကို ရောက်ရှိသွားသည်။ မိုးရွာရန်အစပြုချိန် အချေမကျမှီ လေထုထဲမှကြေးနီများသည် ကာလကြာရှည် ထင်ရှားစွာ တည်ရှိနေပါသည်။ ထိုအရာသည် မိုးရွာပြီးနောက် မြေကြီးထဲသို့ ရောက်ရှိသွားသည်။ နောက်ဆုံးရလဒ်အဖြစ် မြေကြီးထဲရှိ ကြေးနီပါဝင်မှုမှာ လေထုထဲတွင် ပါဝင်မှုထက် အရေအတွက် ပိုမိုများလာခြင်း ဖြစ်သည်။ ကြေးနီကို သဘာဝအရင်းအမြစ် နှင့် လူတို့၏ စွမ်းဆောင်မှု အားဖြင့် ပတ်ဝန်းကျင်တွင် တွေ့နိုင်သည်။ ဥပမာ သဘာဝ အားဖြင့် ဖုန်မှုန့်ပါသောလေတိုက်ခြင်း၊ အသီးအရွက်များဆွေးမြေ့ခြင်း၊ တောမီးလောင်ခြင်း နှင့် ပင်လယ်ရေမှုန်ရေမွှားများ တွင်တွေ့နိုင်သည်။ အခြားသော ဥပမာများမှာ သတ္ထုတွင်းတူးဖော်ခြင်းများ၊ သတ္ထုထုတ်လုပ်ခြင်း၊ သစ်သားထုတ်လုပ်ခြင်း၊ ဖော့စ်ဖရိတ်မြေဩဇာ ထုတ်လုပ်ခြင်းများ ဖြစ်ကြသည်။ အဘယ်ကြောင့်ဆိုသော် သဘာဝအရင်းအမြစ်နှင့် လူတို့၏ စွမ်းဆောင်မှုများသည် ပတ်ဝန်းကျင်၌ အလွန်ပျံ့နှံ့ နေသောကြောင့်ဖြစ်သည်။ ကြေးနီကို သတ္တုတွင်းများအနီး၊ စက်မှုလုပ်ငန်းများ၊ မြေဖို့ခြင်းနှင့် စွန့်ပစ်ပစ္စည်းများတွင် မကြာခဏ တွေ့ရှိရသည်။ ကြေးနီဒြပ်ပေါင်း အများစုသည် အခြားသောရေအနယ်အနှစ် သို့မဟုတ် မြေမှုန့်များအဖြစ်သို့ အခြေကျသွားသည်ဟု သတ်မှတ်ရပါမည်။ ကြေးနီအရည် ဒြပ်ပေါင်းများသည် လူသားတို့အတွက် ကြီးမားသောဘေး အန္တရာယ် ဖြစ်စေသည်။ ရေတွင်ပျော်ဝင်နေသော ကြေးနီဒြပ်ပေါင်းများကို အများအားဖြင့် စိုက်ပျိုးရေးလုပ်ငန်းများတွင် အသုံးချခြင်းဖြင့် ပတ်ဝန်းကျင်တွင် တွေ့ရှိနိုင်သည်။ ကမ္ဘာပေါ်တွင် ကြေးနီထုတ်လုပ်မှုကို တစ်နှစ်လျှင် ပမာဏအားဖြင့် တန်ချိန် ၁၂ သန်းထုတ်လုပ်လျက် ရှိပြီး ကန့်သတ်ထားသော သယံဇာတ ထုတ်လုပ်မှုမှာ ပမာဏအားဖြင့် တန်ချိန် သန်း ၃၀၀ ဖြစ်သည်။ ၎င်းပမာဏသည် ၂၅ နှစ်အတွင်းသာလျှင် တာရှည်ခံမည်ဟု မျှော်လင့်ထားကြသည်။ တစ်နှစ်လျှင် ၂ သန်းခန့်ကို ပြန်လည်ပြုလုပ်ခြင်းဖြင့် ကြေးရိုင်းအဖြစ် အသုံးပြုပါသည်။ ယနေ့တွင် ကမ္ဘာ့ကြေးနီ ပမာဏ ၈၀% သည် အဓိကကျသော သယံဇာတအဖြစ် ချီလီ၊ အင်ဒိုနီးရှား၊ အမေရိကန်၊ အော်စတြေးလျ နှင့် ကနေဒါ နိုင်ငံတို့တွင် တွေ့ရှိရသည်။ အဓိကကျသော သတ္တုရိုင်းသည် အဝါရောင် ကော့ပါးအိုင်းယွန်း ဆာလ်ဖိုဒ် (chalcopyrite -CuFeS2) ဖြစ်သည်။

အရိုးရှင်းဆုံး ကော့ပါး1 အေက်ဆိုဒ်
အမိုနီယ ပေါင်းစပ်မှုတွင် ကော့ပါး2 သည် အပြာရောင်သို့ မြင်သာစွာပေးနိုင်သည်။

ကျန်းမာရေးဆိုင်ရာ သက်ရောက်မှုများ

[ပြင်ဆင်ရန်]

ကြေးနီကို လေထုနှင့် သောက်ရေကဲ့သို့ အမျိုးမျိုးသော အစားအသောက်များတွင် တွေ့ရှိရသည်။ ကျွနု်ပ်တို့ နေ့စဉ်စားခြင်း၊ သောက်ခြင်း၊ အသက်ရှုခြင်းများတွင် ထင်ရှားသော ကြေးနီပမာဏကို စုပ်ယူထားသည်။ ကြေးနီစုပ်ယူမှုသည် လိုအပ်ချက် တစ်ခုဖြစ်သည်။ အဘယ်ကြောင့်ဆိုသော် ကြေးနီသည် လူသားများအတွက် အမှန်တကယ် လိုအပ်သော သတ္ထုဒြပ်စင်တစ်ခု ဖြစ်သည်။ သို့သော်လည်း ကြေးနီပါဝင်မှု မြင့်မားလာပါက လူသားများ၏ ကျန်းမာရေးပြဿနာများ ဖြစ်ပေါ်စေနိုင်သည်။ များသောအားဖြင့် လေထဲတွင် ကြေးနီပါဝင်မှု နည်းပါသည်။ ထို့ကြောင့် အသက်ရှုခြင်းဖြင့် ကြေးနီစုပ်ယူမှုကို လျှစ်လျှူရှု့ထား နိုင်သည်။ သို့သော် သတ္ထုအရည်ကျို လုပ်ငန်းများ အနီးတွင် နေထိုင်သော သူများသည် ကြေးနီစုပ်ယူမှု များစေနိုင်သည်။ ခဲလုပ်ငန်းလုပ်ကိုင်သော အိမ်များတွင် နေထိုင်သူများသည်လည်း ကြေးနီပမာဏ မြင့်မားစွာ စုပ်ယူထားသည်ကို တွေ့နိုင်သည်။ အဘယ်ကြောင့်ဆိုသော် ၎င်းတို့၏ သောက်ရေထဲတွင် ရေပိုက်များဆွေးခြင်း၊ စားခြင်းတို့မှ တဆင့် ခန္ဓာကိုယ်သို့ ဝင်ရောက်နိုင်ခြင်းကြောင့် ဖြစ်သည်။ အလုပ်အကိုင်နှင့်ဆိုင်သော ထိတွေ့မှုများတွင် ကြေးနီ၏ ဆိုးကျိုးများကို တွေ့ရတတ်သည်။ အလုပ် လုပ်ကိုင်ရာနေရာများတွင် ခဲဆိပ်သင့်ခြင်းကဲ့သို့သော ဖျားနာခြင်းများ ဖြစ်နိုင်သည်။ နှစ်ရက်ကြာပြီးနောက် ဤအခြေအနေမှကျော်ပြီး အလွန်ခံစားရစေသည်။ ကြေးနီကို ထိတွေ့မှု ကြာလာသည်နှင့် အမျှ နှာခေါင်း၊ ပါးစပ် နှင့် မျက်စိတို့ကို ယားယံ နာကျင်ခြင်းများကို ခံစားရခြင်း၊ ခေါင်းကိုက်ခြင်း၊ အစာအိမ်နာကျင်ခြင်း၊ မူးဝေခြင်း၊ ပျို့အန်ခြင်းနှင့် ဝမ်းလျှောခြင်းများကို ဖြစ်စေတတ်သည်။ ကြေးနီကို ခန္ဓာကိုယ်အတွင်း ဝင်ရောက်မှုများခြင်းကြောင့် အသဲနှင့်ကျောက်ကပ်ကို ထိခိုက်ပျက်ဆီးစေနိုင်ပြီး သေဆုံးသည်အထိ ဖြစ်ပွားစေနိုင်သည်။ သိပ္ပံဆောင်းပါးများတွင် မြင့်မားသော ကြေးနီပါဝင်မှု ရှိခြင်းနှင့် အချိန်ကြာရှည်စွာ ထိတွေ့ခြင်းတို့ကို ညွှန်ပြထားသော ကွင်းဆက်တစ်ခုရှိသည်။ ငယ်ရွယ်နုနယ်သော အချိန်တွင် ကြာမြင့်စွာ ထိတွေ့လာသည်နှင့်အမျှ အသိဉာဏ်ပညာ ယိုယွင်းခြင်းကို ဖြစ်စေသည်။ ဤသည်မှာ ပိုမိုဝေးကွာသော စူးစမ်းထောက်လှမ်းမှုအတွက် အရေးပါသော အကြောင်းအရာ ဘာသာရပ်တစ်ခု ဖြစ်လိမ့်မည်။ စက်မှုလုပ်ငန်းတွင် ထိတွေ့နေသော ကြေးနီအခိုးအငွေ့များ၊ ဖုန်မှုန့်များ သို့မဟုတ် မြူမှုန်များသည် ပြောင်းလဲသွားပြီး နှပ်၊ ချွဲသလိပ်များဖြစ်ကာ နှာခေါင်းအမှေးပါးနှင့်ဆိုင်သော နှာခေါင်းနာခြင်းကို ဖြစ်စေသည်။ ကြေးနီ အဆိပ်သင့်ခြင်းကြောင့် ဝယ်လ်စွန်( Wilson ) ခေါ် နာတာရှည်ရောဂါများ၊ အသည်းနှင့်ဆိုင်သောရောဂါ လက္ခဏာများ၊ ဦးနှောက်ပျက်စီးဆုံးရှုံးခြင်း၊ အာရုံကြောများဆုံးရှုံးခြင်း၊ ကျေက်ကပ်နှင့်ဆိုင်သော ရောဂါများနှင့် မျက်ကြည်လွှာတွင် ကြေးနီအနည်ကျခြင်း စသောရောဂါများကို ဖြစ်စေသည်။

ပတ်ဝန်းကျင်သို့ သတ်ရောက်မှုများ

[ပြင်ဆင်ရန်]

ကြေးနီသည် မြေဆီလွှာအတွင်းတွင် ရှိနေပြီး ဇီဝဓာတုနှင့် ဆိုင်သောအရာ ဝတ္ထုများ၊ တွင်းထွက်ကျောက်များတွင် ကပ်တည်ရှိနေသည်။ ကြေးနီသည် ဖယ်ထွက်လာပြီး အကျိုးဆက်တစ်ခုအနေဖြင့် အလွန်ဝေးကွာသော နေရာသို့ ရောက်ရှိသွားခြင်း မရှိပါ။ ၎င်းသည် မြေအောက်ရေထဲသို့ အမြဲတမ်းဝင်ရောက်သွားသည်။ ရေမျက်နှာပြင်တွင် ကြေးနီသည် ရွှံ့နွံအမှုန်များနှင့် ရောနှောကာ သို့မဟုတ် လွတ်လပ်သောအမှုန်များ (ions) အဖြစ် သွားလာနေပါသည်။ ကြေးနီသည်ပတ်ဝန်းကျင်တွင် ပျက်စီးသွားခြင်းမရှိပါ။ မြေဆီလွှာအတွင်းရှိ အပင်နှင့် တိရစ္ဆာန်တို့တွင် စုဆောင်း တည်ရှိနေနိုင်သည်။ ကြေးနီကြွယ်ဝသော မြေဆီလွှာတွင် ကန့်သတ်ထားသော အပင်များ၏ အရေအတွက်သာလျှင် အသက်ရှင်ခွင့် ရှိမည်ဖြစ်သည်။ ထိုအချက်အရ ကြေးနီစွန့်ထုတ်သော စက်ရုံများအနီးတွင် အပင်များကို များများမတွေ့ရခြင်း ဖြစ်သည်။ အပင်များပေါ်တွင်ကျရောက်သော ကြေးနီ၏ အကျိုးဆက်ကြောင့် စိုက်ပျိုး မွေးမြူရေးတွင် ပြင်းထန်သော အန္တရာယ်များ ကျရောက်စေသည်။ မြေဆီလွှာ၏ အက်ဆစ်ဓာတ်နှင့် ဇီဝပစ္စည်းများပေါ်တွင် မူတည်ပြီး ကြေးနီသည် စိုက်ပျိုးမွေးမြူရေး လုပ်ငန်းများကို ပြင်းထန်စွာ လွှမ်းမိုးထားနိုင်သည်။ ဤသို့ဖြစ်သော်ငြားလည်း ကြေးနီပါဝင်မှုရှိသော မြေဩဇာများကို အသုံးချခဲ့ကြသည်။ မြေဆီလွှာအတွင်းမှ ကြေးနီ၏ စွမ်းဆောင်မှုသည် တီကောင်နှင့် သေးငယ်သော ဇီဝသက်ရှိများ၏ လှုပ်ရှားမှုကို လွှမ်းမိုးထားခြင်း မရှိဟု ပြောဆိုနိုင်သည်။ ဇီဝအခြေခံသော ပစ္စည်းများ ပြိုကွဲခြင်းသည် ၎င်းအချက်များကို သိသာစွာ လျှော့ကျစေသည်။ စိုက်ပျိုးမွေးမြုရေး လုပ်ငန်းများတွင် ကြေးနီကြောင့် မြေဆီလွှာများ ဆိုးညစ်စေခြင်းနှင့် တိရစ္ဆာန်များ ကြေးနီကို စုပ်ယူခြင်းဖြင့် ၎င်းတို့၏ကျန်းမာရေးကို ထိခိုက် ပျက်စီးစေသည်။ အဓိကအားဖြင့် သိုးများသည် ကြေးနီအဆိပ်သင့်ခြင်း ဝေဒနာကို ကြီးမားစွာ ခံစားရတတ်သည်။ အဘယ်ကြောင့်ဆိုသော် ကြေးနီ၏အကျိုးဆက်များကို အာရုံစူးစိုက်မှု နည်းပါးနေသောကြောင့် ဖြစ်သည်။

ကိုးကား

[ပြင်ဆင်ရန်]
  1. Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  2. Lide, D. R., ed. (2005)။ "Magnetic susceptibility of the elements and inorganic compounds"။ CRC Handbook of Chemistry and Physics (PDF) (86th ed.)။ Boca Raton (FL): CRC Press။ ISBN 0-8493-0486-5
  3. Weast၊ Robert (1984)။ CRC, Handbook of Chemistry and Physics။ Boca Raton, Florida: Chemical Rubber Company Publishing။ pp. E110။ ISBN 0-8493-0464-4